Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 39.214
1.
Mikrochim Acta ; 191(6): 303, 2024 05 06.
Article En | MEDLINE | ID: mdl-38709340

A platform was designed based on Fe3O4 and CsPbBr3@SiO2 for integrated magnetic enrichment-fluorescence detection of Salmonella typhimurium, which significantly simplifies the detection process and enhances the working efficiency. Fe3O4 served as a magnetic enrichment unit for the capture of S. typhimurium. CsPbBr3@SiO2 was employed as a fluorescence-sensing unit for quantitative signal output, where SiO2 was introduced to strengthen the stability of CsPbBr3, improve its biomodificability, and prevent lead leakage. More importantly, the SiO2 shell shows neglectable absorption or scattering towards fluorescence, making the CsPbBr3@SiO2 exhibit a high quantum yield of 74.4%. After magnetic enrichment, the decreasing rate of the fluorescence emission intensity of the CsPbBr3@SiO2 supernatant at 527 nm under excitation light at UV 365 nm showed a strong linear correlation with S. typhimurium concentration of 1 × 102~1 × 108 CFU∙mL-1, and the limit of detection (LOD) reached 12.72 CFU∙mL-1. This platform has demonstrated outstanding stability, reproducibility, and resistance to interference, which provides an alternative for convenient and quantitative detection of S. typhimurium.


Fluorescent Dyes , Limit of Detection , Salmonella typhimurium , Silicon Dioxide , Salmonella typhimurium/isolation & purification , Silicon Dioxide/chemistry , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence/methods , Lead/chemistry , Point-of-Care Systems , Sulfides/chemistry , Magnetite Nanoparticles/chemistry , Humans
3.
Environ Monit Assess ; 196(6): 570, 2024 May 22.
Article En | MEDLINE | ID: mdl-38778004

Heavy metals significantly impact the environment due to their non-biodegradable, toxic, and carcinogenic behaviors. Lead contaminants impose severe health impacts on humans and the water environment. Therefore, eco-friendly and efficient lead ion removal practices such as nanotechnology are an urgent requirement for the abatement of lead pollution. In the present study, nanocellulose was synthesized from the cotton straw residue using chemical methods and modified with titanium dioxide to form a nanocomposite. The nanocomposite synthesized was characterized by using FTIR, XRD, FESEM, and BET. FTIR results noticed peaks at 1648.43 and 1443.57 cm-1 for cellulose and Ti-O-Ti bonding at 505.02 cm-1. The nanocomposite was noticed to be disordered and irregular in shape. The nanocomposite has particle sizes of 83 nm. The nanocomposite crystalline particle had 65% anatase and 32% rutile phases observed from the XRD result. BET results show that the surface area of nanocellulose increases after surface modification from 25.692 to 42.510 m2/g. The adsorption capacity of the nanocomposite was 0.552 mg/g was noticed. The Elovich kinetic and Baudu isotherms are the best-fitted models for lead ion adsorption. Thermodynamic parameters resulted in Gibbs free energy decreasing with temperature. This study revealed that modified cellulosic adsorbents efficiently absorbed lead ions derived from cotton straws.


Cellulose , Lead , Water Pollutants, Chemical , Lead/chemistry , Cellulose/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Adsorption , Nanocomposites/chemistry , Titanium/chemistry , Kinetics
4.
Sci Rep ; 14(1): 11627, 2024 05 21.
Article En | MEDLINE | ID: mdl-38773279

A new idea to alleviate environmental pollution is the development of low-cost adsorbents using natural minerals and fishery wastes to treat high concentrations of heavy metal pollutants in acid mine drainage (AMD). Adsorbent morphology, adsorptive and regenerative capacity, and application potential are limiting factors for their large-scale use. Oyster shells capable of releasing alkalinity were loaded on the surface of lignite to develop two composite adsorbents with different morphologies (powdery and globular) for the treatment of AMD containing Pb(II) and Cd(II). The results show that the ability of the adsorbent to treat AMD is closely related to its morphologies. The pseudo-second-order kinetic model and the Langmuir model are suitable to describe the adsorption process of OS-M(P), and the maximum adsorption saturation capacities of Pb(II) and Cd(II) are 332.6219 mg/g and 318.9854 mg/g, respectively. The pseudo-second-order kinetic model and the Freundlich model are suitable to describe the adsorption process of OS-M(G). A synergistic result of electrostatic adsorption, neutralization precipitation, ion exchange and complex reaction is achieved in the removal of Pb(II) and Cd(II) by two morphologies of adsorbents. The regeneration times (5 times) and recovery rate (75.75%) of OS-M(G) are higher than those of OS-M(P) (3 times) and recovery rate (20%). The ability of OS-M(G) to treat actual AMD wastewater is still better than that of OS-M(P). OS-M(G) can be used as a promising environmentally friendly adsorbent for the long-term remediation of AMD. This study provides a comprehensive picture of resource management and reuse opportunities for natural mineral and fishery wastes.


Animal Shells , Cadmium , Lead , Mining , Ostreidae , Water Pollutants, Chemical , Lead/chemistry , Cadmium/chemistry , Adsorption , Animals , Ostreidae/chemistry , Animal Shells/chemistry , Water Pollutants, Chemical/chemistry , Kinetics
5.
Plant Physiol Biochem ; 211: 108719, 2024 Jun.
Article En | MEDLINE | ID: mdl-38739962

Rapid global industrialization and an increase in population have enhanced the risk of heavy metals accumulation in plant bodies to disrupt the morphological, biochemical, and physiological processes of plants. To cope with this situation, reduced graphene oxide (rGO) NPs were used first time to mitigate abiotic stresses caused in plant. In this study, rGO NPs were synthesized and reduced with Tecoma stans plant leave extract through modified Hummer's methods. The well prepared rGO NPs were characterized by ultra-violet visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Zeta potential, and scanning electron microscopy (SEM). However, pot experiment was conducted with four different concentrations (15, 30, 60, 120 mg/L) of rGO NPs and three different concentrations (300, 500,700 mg/L) of lead (Pb) stress were applied. To observe the mitigative effects of rGO NPs, 30 mg/L of rGO NPs and 700 mg/L of Pb were used in combination. Changes in morphological and biochemical characteristics of wheat plants were observed for both Pb stress and rGO NPs treatments. Pb was found to inhibit the morphological and biochemical characteristics of plants. rGO NPs alone as well as in combination with Pb was found to increase the chlorophyll content of wheat plants. Under Pb stress conditions and rGO NPs treatments, antioxidant enzyme activities like ascorbate peroxidases (APX), superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were observed. Current findings revealed that greenly reduced graphene oxide NPs can effectively promote growth in wheat plants under Pb stress by elevating chlorophyll content of leaves, reducing the Pb uptake, and suppressing ROS produced due to Pb toxicity.


Graphite , Lead , Triticum , Lead/toxicity , Lead/metabolism , Triticum/drug effects , Triticum/metabolism , Triticum/growth & development , Antioxidants/metabolism , Superoxide Dismutase/metabolism , Chlorophyll/metabolism
6.
Environ Health Perspect ; 132(5): 57010, 2024 May.
Article En | MEDLINE | ID: mdl-38780454

BACKGROUND: Manganese (Mn) plays a significant role in both human health and global industries. Epidemiological studies of exposed populations demonstrate a dose-dependent association between Mn and neuromotor effects ranging from subclinical effects to a clinically defined syndrome. However, little is known about the relationship between early life Mn biomarkers and adolescent postural balance. OBJECTIVES: This study investigated the associations between childhood and adolescent Mn biomarkers and adolescent postural balance in participants from the longitudinal Marietta Communities Actively Researching Exposures Study (CARES) cohort. METHODS: Participants were recruited into CARES when they were 7-9 y old, and reenrolled at 13-18 years of age. At both time points, participants provided samples of blood, hair, and toenails that were analyzed for blood Mn and lead (Pb), serum cotinine, hair Mn, and toenail Mn. In adolescence, participants completed a postural balance assessment. Greater sway indicates postural instability (harmful effect), whereas lesser sway indicates postural stability (beneficial effect). Multivariable linear regression models were conducted to investigate the associations between childhood and adolescent Mn biomarkers and adolescent postural balance adjusted for age, sex, height-weight ratio, parent/caregiver intelligence quotient, socioeconomic status, blood Pb, and serum cotinine. RESULTS: CARES participants who completed the adolescent postural balance assessment (n=123) were 98% White and 54% female and had a mean age of 16 y (range: 13-18 y). In both childhood and adolescence, higher Mn biomarker concentrations were significantly associated with greater adolescent sway measures. Supplemental analyses revealed sex-specific associations; higher childhood Mn biomarker concentrations were significantly associated with greater sway in females compared with males. DISCUSSION: This study found childhood and adolescent Mn biomarkers were associated with subclinical neuromotor effects in adolescence. This study demonstrates postural balance as a sensitive measure to assess the association between Mn biomarkers and neuromotor function. https://doi.org/10.1289/EHP13381.


Biomarkers , Hair , Manganese , Nails , Postural Balance , Humans , Adolescent , Biomarkers/blood , Manganese/blood , Manganese/analysis , Female , Male , Child , Postural Balance/physiology , Hair/chemistry , Nails/chemistry , Cohort Studies , Environmental Exposure/statistics & numerical data , Lead/blood , Longitudinal Studies , Cotinine/blood , Environmental Pollutants/blood
7.
Environ Monit Assess ; 196(5): 494, 2024 May 01.
Article En | MEDLINE | ID: mdl-38691200

This study investigated the impact of soil type, pH, and geographical locations on the accumulation of arsenic (As), lead (Pb), and cadmium (Cd) in rice grains cultivated in Ghana. One hundred rice farms for the sampling of rice grains and soil were selected from two regions in Ghana-Volta and Oti. The concentrations of As, Pb, and Cd were analyzed using ICP-OES. Speciation modeling and multivariate statistics were employed to ascertain the relations among measured parameters. The results showed significant variations in soil-As, Pb, and Cd levels across different soil types and pH ranges, with the highest soil-As and Cd found in alkaline vertisols. For soil-As and Cd, the vertisols with a pH more than 7.0 exhibited the highest mean concentration of As (2.51 ± 0.932 mgkg-1) and Cd (1.00 ± 0.244 mgkg-1) whereas for soil-Pb, the luvisols of soil types with a pH less than 6.0 exhibited the highest mean concentration of Pb (4.91 ± 1.540 mgkg-1). Grain As, Pb, and Cd also varied across soil types and pH levels. In regards to grain-As, the vertisols soil type, with a pH less than 6.0, shows the highest mean concentration of grain As, at 0.238 ± 0.107 mgkg-1. Furthermore, vertisols soil types with a pH level less than 6.0 showed the highest mean concentration of grain Cd, averaging at 0.231 ± 0.068 mgkg-1 while luvisols, with a pH less than 6.0, exhibited the highest mean concentration of grain Pb at 0.713 ± 0.099 mgkg-1. Speciation modeling indicated increased bioavailability of grains Cd2+ and Pb2+ ions in acidic conditions. A significant interaction was found between soil-Cd and pH, affecting grain-As uptake. The average concentrations of soil As, Pb, and Cd aligned with international standards. Generally, the carcinogenic metals detected in grain samples collected from the Volta region are higher than that of the Oti region but the differences are insignificant, and this may be attributed to geographical differences and anthropogenic activities. About 51% of the study area showed a hazard risk associated with grain metal levels, although, no carcinogenic risks were recognized. This study highlights the complex soil-plant interactions governing metal bioaccumulation and emphasizes the need for tailored strategies to minimize metal transfer into grains.


Arsenic , Cadmium , Environmental Monitoring , Oryza , Soil Pollutants , Soil , Soil Pollutants/analysis , Ghana , Soil/chemistry , Oryza/chemistry , Cadmium/analysis , Hydrogen-Ion Concentration , Arsenic/analysis , Lead/analysis , Agriculture
8.
Environ Monit Assess ; 196(5): 491, 2024 May 01.
Article En | MEDLINE | ID: mdl-38691183

This study explores the dual applications of a greenly synthesized ZnO@CTAB nanocomposite for the efficient remediation of Rhodamine B (RhB) and lead (Pb). The synthesis method involves a sustainable approach, emphasizing environmentally friendly practices. FT-IR, XRD, FESEM, zeta potential, and particle size analyzer (PSA), BET, and UV-VIS were used to physically characterize the zinc oxide and CTAB nanocomposite (ZnO@CTAB). The size and crystalline index of ZnO@CTAB are 77.941 nm and 63.56% respectively. The Zeta potential of ZnO@CTAB is about - 22.4 mV. The pore diameter of the ZnO@CTAB was 3.216 nm, and its total surface area was 97.42 m2/g. The mechanism of adsorption was investigated through pHZPC measurements. The nanocomposite's adsorption performance was systematically investigated through batch adsorption experiments. At pH 2, adsorbent dose of 0.025 g, and temperature 50 °C, ZnO@CTAB removed the most RhB, while at pH 6, adsorbent dose of 0.11 g, and temperature 60 °C, ZnO@CTAB removed the most Pb. With an adsorption efficiency of 214.59 mg/g and 128.86 mg/g for RhB and Pb, the Langmuir isotherm model outperforms the Freundlich isotherm model in terms of adsorption. The pseudo-2nd-order model with an R2 of 0.99 for both RhB and Pb offers a more convincing explanation of adsorption than the pseudo-1st-order model. The results demonstrated rapid adsorption kinetics and high adsorption capacities for RhB and Pb. Furthermore, there was minimal deterioration and a high reusability of ZnO@CTAB till 4 cycles were observed.


Lead , Nanocomposites , Rhodamines , Water Pollutants, Chemical , Zinc Oxide , Lead/chemistry , Zinc Oxide/chemistry , Rhodamines/chemistry , Nanocomposites/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Cetrimonium/chemistry , Environmental Restoration and Remediation/methods , Green Chemistry Technology , Nanostructures/chemistry
9.
Environ Monit Assess ; 196(6): 496, 2024 May 02.
Article En | MEDLINE | ID: mdl-38693437

This study examined the presence of two heavy metals (Cd and Pb) in the sediments and Asian swamp eels (Monopterus albus) in the downstream area of Cisadane River. The average concentrations of Cd and Pb in the sediments from all sampling locations were 0.594 ± 0.230 mg/kg and 34.677 ± 24.406 mg/kg, respectively. These concentrations were above the natural background concentration and the recommended value of interim sediment quality guidelines (ISQG), suggesting an enrichment process and potential ecological risk of studied metals to the ecosystem of Cisadane River. The increase in contamination within this region may be attributed to point sources such as landfill areas, as well as the industrial and agricultural land activities in surrounding area, and experienced an increasing level leading towards the estuary of Cisadane River. Meanwhile, the average concentrations of Cd and Pb in the eels from all sampling locations were 0.775 ± 0.528 µg/g and 28.940 ± 12.921 µg/g, respectively. This study also discovered that gill tissues contained higher levels of Cd and Pb than the digestive organ and flesh of Asian swamp eels. These concentrations were higher than Indonesian and international standards, suggesting a potential human health risk and therefore the needs of limitations in the consumption of the eels. Based on the human health risk assessment, the eels from the downstream of Cisadane River are still considered safe to be consumed as long as they comply with the specified maximum consumption limits.


Cadmium , Environmental Monitoring , Geologic Sediments , Lead , Rivers , Smegmamorpha , Water Pollutants, Chemical , Animals , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Rivers/chemistry , Indonesia , Cadmium/analysis , Lead/analysis , Lead/metabolism , Smegmamorpha/metabolism
10.
Environ Geochem Health ; 46(6): 192, 2024 May 02.
Article En | MEDLINE | ID: mdl-38696062

Urban areas are characterized by a constant anthropogenic input, which is manifested in the chemical composition of the surface layer of urban soil. The consequence is the formation of intense anomalies of chemical elements, including lead (Pb), that are atypical for this landscape. Therefore, this study aims to explore the compositional-geochemical characteristics of soil Pb anomalies in the urban areas of Yerevan, Gyumri, and Vanadzor, and to identify the geochemical associations of Pb that emerge under prevalent anthropogenic influences in these urban areas. The results obtained through the combined use of compositional data analysis and geospatial mapping showed that the investigated Pb anomalies in different cities form source-specific geochemical associations influenced by historical and ongoing activities, as well as the natural geochemical behavior of chemical elements occurring in these areas. Specifically, in Yerevan, Pb was closely linked with Cu and Zn, forming a group of persistent anthropogenic tracers of urban areas. In contrast, in Gyumri and Vanadzor, Pb was linked with Ca, suggesting that over decades, complexation of Pb by Ca carbonates occurred. These patterns of compositional-geochemical characteristics of Pb anomalies are directly linked to the socio-economic development of cities and the various emission sources present in their environments during different periods. The human health risk assessment showed that children are under the Pb-induced non-carcinogenic risk by a certainty of 63.59% in Yerevan and 50% both in Gyumri and Vanadzor.


Cities , Lead , Soil Pollutants , Lead/analysis , Soil Pollutants/analysis , Humans , Risk Assessment , Environmental Monitoring/methods , Soil/chemistry , Environmental Exposure , Child , Ukraine
11.
Anal Chim Acta ; 1308: 342649, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38740457

BACKGROUND: Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a-powered biosensor with a G-quadruplex (G4) reporter offer the benefits of simplicity and sensitivity, making them extensively utilized in detection applications. However, these biosensors used for monitoring pollutants in environmental water samples may face the problem of high background signal and easy interference due to the "signal-off" output. It is obvious that a biosensor based on the CRISPR/Cas12a system and G4 with a "signal on" output mode needs to be designed for detecting environmental pollutants. RESULTS: By using phosphorothioate-modified G4 as a reporter and catalytic hairpin assembly (CHA) integrated with Cas12a as an amplification strategy, a "signal-on" colorimetric/photothermal biosensor (psG4-CHA/Cas) for portable detection of environmental pollutants was developed. With the help of functional nucleotides, the target pollutant (kanamycin or Pb2+) triggers a CHA reaction to produce numerous double-strand DNA, which can activate Cas12a's trans-cleavage activity. The active Cas12a cleaves locked DNA to release caged psG-rich sequences. Upon binding hemin, the psG-rich sequence forms a psG4/hemin complex, facilitating the oxidation of the colorless 3,3',5,5'-tetramethylbenzidine (TMB) into the blue photothermal agent (oxTMB). The smartphone was employed for portable colorimetric detection of kanamycin and Pb2+. The detection limits were found to be 100 pM for kanamycin and 50 pM for Pb2+. Detection of kanamycin and Pb2+ was also carried out using a portable thermometer with a detection limit of 10 pM for kanamycin and 8 pM for Pb2+. SIGNIFICANCE: Sensitive, selective, simple and robust detection of kanamycin and Pb2+ in environmental water samples is achieved with the psG4-CHA/Cas system. This system not only provides a new perspective on the development of efficient CRISPR/Cas12a-based "signal-on" designs, but also has a promising application for safeguarding human health and environmental monitoring.


Biosensing Techniques , CRISPR-Cas Systems , G-Quadruplexes , Biosensing Techniques/methods , CRISPR-Cas Systems/genetics , Colorimetry , Lead/analysis , Environmental Pollutants/analysis , Limit of Detection , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/genetics , Water Pollutants, Chemical/analysis , Bacterial Proteins , Endodeoxyribonucleases
12.
Nutrients ; 16(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732616

BRCA1 mutations substantially elevate the risks of breast and ovarian cancer. Various modifiers, including environmental factors, can influence cancer risk. Lead, a known carcinogen, has been associated with various cancers, but its impact on BRCA1 carriers remains unexplored. A cohort of 989 BRCA1 mutation carriers underwent genetic testing at the Pomeranian Medical University, Poland. Blood lead levels were measured using inductively coupled plasma mass spectrometry. Each subject was assigned to a category based on their tertile of blood lead. Cox regression analysis was used to assess cancer risk associations. Elevated blood lead levels (>13.6 µg/L) were associated with an increased risk of ovarian cancer (univariable: HR = 3.33; 95% CI: 1.23-9.00; p = 0.02; multivariable: HR = 2.10; 95% CI: 0.73-6.01; p = 0.17). No significant correlation was found with breast cancer risk. High blood lead levels are associated with increased risk of ovarian cancer in BRCA1 carriers, suggesting priority for preventive salpingo-oophorectomy. Potential risk reduction strategies include detoxification. Validation in diverse populations and exploration of detoxification methods for lowering lead levels are required.


BRCA1 Protein , Lead , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/blood , Ovarian Neoplasms/genetics , Lead/blood , Adult , Middle Aged , BRCA1 Protein/genetics , Risk Factors , Poland , Heterozygote , Mutation , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Genetic Predisposition to Disease , Aged , Proportional Hazards Models
13.
Chemosphere ; 358: 142199, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692366

Industrial hemp (Cannabis sativa L.) has great application potential in heavy metal-polluted soils owing to its safe non-food utilization. However, the fate of heavy metals in different varieties of hemp planted in strongly contaminated natural soils remains unknown. Here, we investigated the growth, heavy metal uptake, distribution, and transfer of nine hemp varieties in soils strongly contaminated with Cu, As, Cd, and Pb. Hemp variety and metal type were the main factors affecting the growth and heavy metal uptake in hemp. The nine hemp varieties grew well in the contaminated soils; however, differences existed among the varieties. The biomass of Z3 reached 5669.1 kg hm-1, whereas that of Yunma No. 1 was only 51.8 % of Z3. The plant height, stalk diameter, and stalk bark thickness of Z3 were greater than those of the other varieties, reaching 168 cm, 9.2 mm, and 0.56 mm, respectively. Permanova's analysis revealed that the total effects of Cu, As, Cd, and Pb on the growth of the nine hemp varieties reached 60 %, with leaf As having the greatest effect, reaching 16 %. , Even in strongly contaminated soils, the nine varieties showed poor Cu, As, Cd, and Pb uptake. Most of the Cu, As, Cd, and Pb were retained in the root, reaching 57.7-72.4, 47.6-64.7, 76.0-92.9, and 70.0-87.8 %, respectively. Overall, the Cu, As, Cd, and Pb uptake of Wanma No.1 was the highest among the nine varieties, whereas that of Guangxi Bama was the lowest. These results indicate that hemp is a viable alternative for phytoattenuation in soils contaminated with heavy metals because of its ability to tolerate and accumulate Cu, As, Cd, and Pb in its roots, and Guangxi Bama is superior to the other varieties considering the safe utilization of hemp products.


Arsenic , Biodegradation, Environmental , Cadmium , Cannabis , Copper , Lead , Metals, Heavy , Soil Pollutants , Soil , Cannabis/growth & development , Cannabis/metabolism , Soil Pollutants/metabolism , Soil Pollutants/analysis , Metals, Heavy/analysis , Metals, Heavy/metabolism , Lead/metabolism , Lead/analysis , Cadmium/metabolism , Cadmium/analysis , Arsenic/metabolism , Arsenic/analysis , Copper/analysis , Soil/chemistry , Biomass , Plant Roots/metabolism , Plant Roots/growth & development
14.
Article En | MEDLINE | ID: mdl-38791777

Lead is an established neurotoxicant, and it has known associations with adverse neurodevelopmental and reproductive outcomes. Exposure to lead at any level is unsafe, and the United States (US) has enacted various federal and state legislations to regulate lead levels in drinking water in K-12 schools and childcare facilities; however, no regulations exist for higher education settings. Upon the discovery of lead in drinking water fixtures in the University of North Carolina at Chapel Hill (UNC-CH) campus, a cross-campus water testing network and sampling plan was developed and deployed. The campaign was based on the US Environmental Protection Agency's (EPA) 3Ts (Training, Testing, and Taking Action) guidance. The seven-month campaign involved 5954 tests on 3825 drinking water fixtures across 265 buildings. A total of 502 (8.43%) tests showed lead above the limit of detection (1 part per billion, ppb), which represented 422 (11.03%) fixtures. Fewer than 1.5% of the tests were above the EPA action level for public water systems (15 ppb). In conclusion, systematic testing of all the fixtures across campus was required to identify localized contamination, and each entity in the cross-campus network undertook necessary roles to generate a successful testing campaign. UNC-CH established preventative measures to test drinking water fixtures every three years, which provide a framework for other higher education institutions in responding to lead contamination.


Drinking Water , Lead , Lead/analysis , Drinking Water/analysis , Drinking Water/chemistry , Universities , North Carolina , Water Pollutants, Chemical/analysis , Humans , Environmental Monitoring , United States , United States Environmental Protection Agency
15.
Molecules ; 29(10)2024 May 08.
Article En | MEDLINE | ID: mdl-38792066

The objective of this study is to develop a remediation technology for composited heavy metal-contaminated soil. Biochars (BC300, BC400, and BC500) derived from corn were combined with potassium dihydrogen phosphate (KH2PO4) to immobilize and remove heavy metal ions, including mercury (Hg2+), cadmium (Cd2+), and lead (Pb2+). The adsorption kinetics of metal ions in aqueous solutions with different concentrations was tested, and the fitting effects of the two models were compared. The findings demonstrate that the joint application of biochar and KH2PO4 could markedly enhance the immobilization efficacy of Pb2+, whereas the utilization of KH2PO4 on its own exhibited a more pronounced immobilization impact on Cd2+. Furthermore, the present study underscores the shortcomings of various remediation techniques that must be taken into account when addressing heavy metal-contaminated soils. It also emphasizes the value of comprehensive remediation techniques that integrate multiple remediation agents. This study offers a novel approach and methodology for addressing the intricate and evolving challenges posed by heavy metal contamination in soil. Its practical value and potential for application are significant.


Cadmium , Charcoal , Lead , Mercury , Phosphates , Potassium Compounds , Soil Pollutants , Charcoal/chemistry , Soil Pollutants/chemistry , Cadmium/chemistry , Lead/chemistry , Adsorption , Mercury/chemistry , Phosphates/chemistry , Potassium Compounds/chemistry , Environmental Restoration and Remediation/methods , Risk Assessment , Soil/chemistry , Metals, Heavy/chemistry , Kinetics
17.
Bull Environ Contam Toxicol ; 112(5): 69, 2024 May 09.
Article En | MEDLINE | ID: mdl-38722440

The rapid development of livestock and poultry industry in China has caused serious environment pollution problems. To understand the heavy metals accumulation and identify their sources, 7 heavy metals contents and lead isotope ratios were determined in 24 soil samples from vegetable fields irrigated with swine wastewater in Dongxiang County, Jiangxi Province, China. The results showed that the concentration of Cr, Ni, Cu, Zn, As, Cd and Pb in the swine wastewater irrigated vegetable soils varied from 38.5 to 86.4, 7.57 to 30.6, 20.0 to 57.1, 37.5 to 174, 9.18 to 53.1, 0.043 to 0.274 and 12.8 to 37.1 mg/kg, respectively. The soils were moderately to heavily polluted by As, moderately polluted by Cr, Ni, Cu, Zn and Cd, and unpolluted to moderately polluted by Pb. Sampling soils were classified as moderately polluted according to the Nemerow comprehensive pollution index. Lead isotope and Principal Component Analysis (PCA) analysis indicated that swine wastewater irrigation and atmospheric deposition were the primary sources of the heavy metals.


Environmental Monitoring , Lead , Metals, Heavy , Soil Pollutants , Vegetables , Wastewater , Soil Pollutants/analysis , Animals , Metals, Heavy/analysis , China , Wastewater/chemistry , Swine , Vegetables/chemistry , Lead/analysis , Agricultural Irrigation , Soil/chemistry , Isotopes/analysis
18.
Int J Mol Sci ; 25(10)2024 May 07.
Article En | MEDLINE | ID: mdl-38791101

Many studies have shown that melatonin (an indoleamine) is an important molecule in plant physiology. It is known that this indoleamine is crucial during plant stress responses, especially by counteracting secondary oxidative stress (efficient direct and indirect antioxidant) and switching on different defense plant strategies. In this report, we present exogenous melatonin's potential to protect lipid profile modification and membrane integrity in Nicotiana tabacum L. line Bright Yellow 2 (BY-2) cell culture exposed to lead. There are some reports of the positive effect of melatonin on animal cell membranes; ours is the first to report changes in the lipid profile in plant cells. The experiments were performed in the following variants: LS: cells cultured on unmodified LS medium-control; (ii) MEL: BY-2 cells cultured on LS medium with melatonin added from the beginning of culture; (iii) Pb: BY-2 cells cultured on LS medium with Pb2+ added on the 4th day of culture; (iv) MEL+Pb: BY-2 cells cultured on LS medium with melatonin added from the start of culture and stressed with Pb2+ added on the 4th day of culture. Lipidomic analysis of BY-2 cells revealed the presence of 40 different phospholipids. Exposing cells to lead led to the overproduction of ROS, altered fatty acid composition and increased PLD activity and subsequently elevated the level of phosphatidic acid at the cost of dropping the phosphatidylcholine. In the presence of lead, double-bond index elevation, mainly by higher quantities of linoleic (C18:2) and linolenic (C18:3) acids in the log phase of growth, was observed. In contrast, cells exposed to heavy metal but primed with melatonin showed more similarities with the control. Surprisingly, the overproduction of ROS caused of lipid peroxidation only in the stationary phase of growth, although considerable changes in lipid profiles were observed in the log phase of growth-just 4 h after lead administration. Our results indicate that the pretreatment of BY-2 with exogenous melatonin protected tobacco cells against membrane dysfunctions caused by oxidative stress (lipid oxidation), but also findings on a molecular level suggest the possible role of this indoleamine in the safeguarding of the membrane lipid composition that limited lead-provoked cell death. The presented research indicates a new mechanism of the defense strategy of plant cells generated by melatonin.


Lead , Melatonin , Nicotiana , Oxidative Stress , Phospholipids , Melatonin/pharmacology , Nicotiana/metabolism , Nicotiana/drug effects , Oxidative Stress/drug effects , Phospholipids/metabolism , Lead/toxicity , Antioxidants/pharmacology , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Lipidomics/methods , Cell Line , Plant Cells/metabolism , Plant Cells/drug effects , Cell Membrane/metabolism , Cell Membrane/drug effects
19.
Bioresour Technol ; 402: 130767, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692373

The study assessed the effect of salinity and lead (Pb(II)) on the anammox sludge for nitrogen removal from saline wastewater. Results showed decreased nitrogen removal and specific anammox activity (SAA) with elevated salinity and Pb(II). SAA reduced from 541.3 ± 4.3 mg N g-1 VSS d-1 at 0.5 mg/L Pb(II) to 436.0 ± 0.2 mg N g-1 VSS d-1 at 30 g/L NaCl, further to 303.6 ± 7.1 mg N g-1 VSS d-1 under 30 g/L NaCl + 0.5 mg/L Pb(II). Notably, the combined inhibition at salinity (15-20 g/L NaCl) and Pb(II) (0.3-0.4 mg/L) exhibited synergistic effect, while higher salinity and Pb(II) aligned with independent inhibition models. Combined inhibition decreased protein/polysaccharides ratio, indicating more severe negative effect on anammox aggregation capacity. Metagenomics confirmed decreased Candidatus Kuenenia, and enhanced denitrification under elevated salinity and Pb(II) conditions. This study offers insights into anammox operation for treating saline wastewater with heavy metals.


Lead , Nitrogen , Salinity , Wastewater , Wastewater/chemistry , Lead/metabolism , Nitrogen/metabolism , Water Purification/methods , Oxidation-Reduction , Sewage/microbiology , Anaerobiosis/drug effects , Bacteria/metabolism , Bacteria/drug effects , Bioreactors , Microbiota/drug effects , Denitrification/drug effects
20.
J Trace Elem Med Biol ; 84: 127460, 2024 Jul.
Article En | MEDLINE | ID: mdl-38703538

BACKGROUND: Exposure to metals during pregnancy can potentially influence blood pressure (BP) in children, but few studies have examined the mixed effects of prenatal metal exposure on childhood BP. We aimed to assess the individual and combined effects of prenatal metal and metalloid exposure on BP in preschool children. METHODS: A total of 217 mother-child pairs were selected from the Zhuang Birth Cohort in Guangxi, China. The maternal plasma concentrations of 20 metals [e.g. lead (Pb), rubidium (Rb), cesium (Cs), and zinc (Zn)] in early pregnancy were measured by inductively coupled plasmamass spectrometry. Childhood BP was measured in August 2021. The effects of prenatal metal exposure on childhood BP were explored by generalized linear models, restricted cubic spline and Bayesian kernel machine regression (BKMR) models. RESULTS: In total children, each unit increase in the log10-transformed maternal Rb concentration was associated with a 10.82-mmHg decrease (95% CI: -19.40, -2.24) in childhood diastolic BP (DBP), and each unit increase in the log10-transformed maternal Cs and Zn concentrations was associated with a 9.67-mmHg (95% CI: -16.72, -2.61) and 4.37-mmHg (95% CI: -8.68, -0.062) decrease in childhood pulse pressure (PP), respectively. The log10-transformed Rb and Cs concentrations were linearly related to DBP (P nonlinear=0.603) and PP (P nonlinear=0.962), respectively. Furthermore, an inverse association was observed between the log10-transformed Cs concentration and PP (ß =-12.18; 95% CI: -22.82, -1.54) in girls, and between the log10-transformed Rb concentration and DBP (ß =-12.54; 95% CI: -23.87, -1.21) in boys, while there was an increasing association between the log10-transformed Pb concentration and DBP there was an increasing in boys (ß =6.06; 95% CI: 0.36, 11.77). Additionally, a U-shaped relationship was observed between the log10-transformed Pb concentration and SBP (P nonlinear=0.015) and DBP (P nonlinear=0.041) in boys. Although there was no statistically signiffcant difference, there was an inverse trend in the combined effect of maternal metal mixture exposure on childhood BP among both the total children and girls in BKMR. CONCLUSIONS: Prenatal exposure to both individual and mixtures of metals and metalloids influences BP in preschool children, potentially leading to nonlinear and sex-specific effects.


Blood Pressure , Maternal Exposure , Metalloids , Metals , Humans , Female , Blood Pressure/drug effects , Child, Preschool , Pregnancy , Maternal Exposure/adverse effects , Male , Metalloids/blood , Metals/blood , Adult , Prenatal Exposure Delayed Effects/chemically induced , Lead/blood , China , Zinc/blood , Bayes Theorem
...